
2020 IEEE International Conference on Software Maintenance and Evolution (ICSME)

On the Impact of Multi-language Development in
Machine Learning Frameworks

Manel Grichi
GIGL department

Polytechnique Montreal
Quebec, Canada

manel.grichi@polymtl.ca

Ellis E. Eghan
GIGL department

Polytechnique Montreal
Quebec, Canada

ellis.eghan@polymtl.ca

Brain Adams
GIGL department

Polytechnique Montreal
Quebec, Canada

bram.adams @ polymtl. ca

Abstract—The role of machine learning frameworks in soft­
ware applications has exploded in recent years. Similar to
non-machine learning frameworks, those frameworks need to
evolve to incorporate new features, optimizations, etc., yet their
evolution is impacted by the interdisciplinary development teams
needed to develop them: scientists and developers. One concrete
way in which this shows is through the use of multiple pro­
gramming languages in their code base, enabling the scientists
to write optimized low-level code while developers can integrate
the latter into a robust framework. Since multi-language code
bases have been shown to impact the development process, this
paper empirically compares ten large open-source multi-language
machine learning frameworks and ten large open-source multi­
language traditional systems in terms of the volume of pull
requests, their acceptance ratio i.e., the percentage of accepted
pull requests among all the received pull requests, review process
duration i.e., period taken to accept or reject a pull request,
and bug-proneness. We find that multi-language pull request
contributions present a challenge for both machine learning
and traditional systems. Our main findings show that in both
machine learning and traditional systems, multi-language pull
requests are likely to be less accepted than mono-language pull
requests; it also takes longer for both multi- and mono-language
pull requests to be rejected than accepted. Machine learning
frameworks take longer to accept/reject a multi-language pull
request than traditional systems. Finally, we find that mono­
language pull requests in machine learning frameworks are more
bug-prone than traditional systems.

Keywords -Machine learning, Framework, Open Source, Soft­
ware engineering, Multi-language, Traditional systems. I.

I . I n t r o d u c t io n

Modem software is no longer developed in a single pro­
gramming language. Instead, programmers tend to exploit the
strengths of different programming languages, thus developing
multi-language systems [1], [2].

In the context of this study, we consider a multi-language
system as any software system where its own codebase con­
tains source code executed at run-time that is developed in
at least two programming languages. This definition excludes
Makefiles, shell scripts, etc. Furthermore, it excludes cases
where a third party library is developed in a different language,
since the code of that library does not belong to the system’s
own codebase.

Programmers also opt for this practice to keep using legacy
implementations of their existing libraries and systems, while

still benefiting from code reuse of modem software compo­
nents [3], [4], Typical combinations of programming languages
are Python C extension [5] and Java Native Interface [4]. For
example, the Python C extension allows a Python program to
interact with native C/C++ modules through a native extension
module (FF1) [6]. The extension module provides a set of
native functions (written in C) that can be imported and used
within Python code.

Given the complex nature of machine learning (ML) and
artificial intelligence (AI) frameworks, the AI community
has been taking advantage of multiple languages in a single
machine learning framework. In particular, while Python has
evolved as the most commonly used language for developing
machine learning frameworks due to its large range of pow­
erful features [7], there are some demerits of using Python
alone i.e., it lacks computational performance needed for high-
frequency real-time predictions [8], it takes significant CPU
time for interpretation, etc. Hence, the Python C extension is
often used as a solution to interface with highly performant C
code for frequently executed low-level algorithms, as required,
for example, by the gaming industry [9], multi-agents [10], and
so on.

Despite the benefits of using multi-languages in developing
machine learning frameworks, there are also several challenges
associated with it. The major issue concerning this paradigm
is that multi-language programs do not necessary obey any of
the semantics of the combined languages [10] and it is the de­
veloper’s responsibility to deal with the different programming
calling conventions to avoid introduction of diverse issues that
can harm the software.

Such concerns are not necessarily new, since multi-language
development has been used for a long time for developing
more traditional systems as discussed by several works in
the literature [11]—[13]. However, in the case of ML frame­
works, the traditional issues of multi-language development
are further corroborated by the inherent complexity of ML
frameworks. For example, they implement highly specialized
mathematical operations that are challenging to test and de­
bug, and even require interdisciplinary collaboration between
scientists and developers [14], [15].

Hence, how ’’open” is open source ML framework devel­
opment? Are these frameworks following the multi-language

2576-3148/20/$31.00 ©2020 IEEE
DOI 10.1109/ICSME46990.2020.00058

546

Authorized licensed use limited to: University of Cape Coast. Downloaded on October 14,2022 at 12:28:54 UTC from IEEE Xplore. Restrictions apply.

trend? Does the practice of multi-language development in­
crease the difficulty of dealing with machine learning frame­
works? To the best of our knowledge, in this paper we present
the first study that investigates the prevalence and the impact of
multi-language development on the development of machine
learning frameworks in terms of their ability to solicit high-
quality open source contributions. More specifically, we study
in this paper the impact of multi-language development in
terms of the volume, acceptance ratio (percentage of accepted
pull requests out of the total), review process duration (the
period spent by the developers to accept or reject a pull
request), and bug-proneness of pull requests (PR).

We empirically analyze the ten largest open source multi­
language machine learning frameworks (Cat-I) and the ten
largest open source traditional systems (Cat-II). In addition, we
consider a set of seven mono-language open source machine
learning frameworks (Cat-III) that serves as a control group
for the comparison between Cat-I and Cat-II. We address the
following research questions:

. RQ1. What is the prevalence of multi-language develop­
ment in machine learning frameworks?

• RQ2. What is the impact of multi-language development
on pull request acceptance ratio in machine learning
frameworks?

• RQ3. What is the impact of multi-language development
on the period taken to accept pull requests in machine
learning frameworks?

. RQ4. Are multi-language pull requests more bug-prone
than mono-language pull requests in machine learning
frameworks?

Our main results show that:
• ML frameworks and traditional systems are comparable

in terms of the proportion of multi-language development
and multi-language pull requests.

• Multi-language PRs in ML frameworks have a lower
acceptance ratio than mono-language PRs.

• Multi-language PRs in ML frameworks take longer to be
accepted than mono-language PRs, and ML frameworks
take longer to accept/reject a multi-PR than traditional
systems.

• Mono-language PRs of ML frameworks are more bug-
prone than in traditional systems.

The remainder of this paper is organized as follows. Section
n describes the methodology and the design of our study.
Section III presents our findings. Section IV discusses the
lessons learned and the implications of the findings. We
summarize the threats to the validity of our conducted study
in Section V and present related work in Section VI. Finally,
Section V n concludes the paper and outlines avenues for
future work.

II. M e t h o d o l o g y

This section discusses our methodology to empirically ana­
lyze the impact of multi-language development on open-source
machine learning frameworks.

A. Project selection and cloning
In this empirical study, we analyze a total of 27 open source

projects hosted on GitHub. Our selected projects include the
ten largest multi-language machine learning frameworks and
seven mono-language machine learning frameworks identified
by Braiek et al. ’s study [7], as well as the ten largest
multi-language traditional systems from Grichi et al. ’s study
[4]. The seven mono-language machine learning frameworks
serve to control for bias and any confounding factors in our
comparison of multi-language machine learning and multi­
language traditional systems.

We clone each project from GitHub and extract the follow­
ing information: total number of lines of code, all pull re­
quests (PR), all commits, and the percentage of programming
languages used. All the used scripts in this study are available
online1 for replication.

B. Project categorisation

For clarity, the selected projects are grouped into 3 cate­
gories: Cat-I constitutes the ten largest multi-language open
source machine learning frameworks, Cat-II constitutes the
ten largest multi-language traditional systems, and Cat-in
constitutes the seven mono-language open source machine
learning frameworks. Table I gives an overview of the three
categories.

C. Preprocessing and filtering

Accepted and Rejected Pull requests — We categorize
pull requests as either accepted or rejected based on the
pull request status (i.e., Merged, Closed). Pull requests with
both closed and merged status are classified as accepted pull
requests. We identify a rejected pull request as being closed
but not merged. We do not consider open pull requests in this
study as they are still under review. For the rest of paper,
we call accepted pull requests “accept-PR” and rejected pull
requests “reject-PR”.

Multi- and Mono-language Pull requests — We identify
the set of changed files for each commit linked to a pull
request, as well as the programming language(s) used in each
file. A pull request that has at least one multi-language commit
is considered as a multi-language pull request. Conversely, a
pull request with no multi-language commit is considered a
mono-language pull request. A commit is tagged as multi­
language if it has files written in more than one programming
language, while it is tagged as mono-language when it has
files written in only one programming language. For example,
a pull request PI that contains two commits Cl (filel.java,
file2.c) and C2 (jile3.c, jile4.c) is considered as a multi­
language pull request. A pull request P2 that contains two
commits C3 (fileS.java, file6.java) and C4 (file7.c, Jile8.c) is
considered as a mono-language pull request.

An alternative definition of multi-language PR would have
been “any PR for which the union of changed files covers

1 https ://github.com/ICSME-2020/ICSME20.git,
https://doi.org/10.6084/m9.figshare.12812159.vl

547

Authorized licensed use limited to: University of Cape Coast. Downloaded on October 14,2022 at 12:28:54 UTC from IEEE Xplore. Restrictions apply.

at least two programming languages”. However, according to
the rules for inter-language dependencies (e.g., , between Java
and C), the (multi-language) dependant files should change
together in order to compile and run, hence our commit-level
definition is more realistic. For the rest of the paper, we call
multi-language pull requests “multi-PR” and mono-language
pull requests “mono-PR”.

D. Pull request analysis

Pull request acceptance period — We calculate the period
spent (in hours) for a pull request to be accepted or rejected
based on the difference between the pull request submission
date and when the pull request was closed.

Bug-inducing pull requests — We collect the log mes­
sages of all pull requests and their contained commits. We
split each message into words, the search for keywords and
references to bug reports. Examples of the common keywords
used were: ’“fix”, “correct”, “bug”, “error”, “issue”, “mistake”,
“blunder”, “incorrect”, “fault”, “defect”, “flaw”, “bugfix”,
“bugfix:”’. Each identified buggy pull request was checked
automatically to identify any reference to a #Bug_number. As
soon as a pull request containing one of the keywords was
also found to refer to a bug report, it was considered to be a
bug fix.

Then, once we identify the pull requests that contain a fix
to a bug, we apply the SZZ algorithm [16] to determine the
initial bug-introducing pull request. The SZZ algorithm uses
git-blame on the revision history to identify commits that are
likely to have introduced bugs to determine first what changed
in the bug-fix, then to locate the origins of the deleted or
modified source code change that introduced this bug [17].
Finally, all identified bug-introducing pull requests are tagged
automatically and assigned to the right group (multi-PR or
mono-PR). We statistically compare the bug-introducing multi-
PR to the bug-introducing mono-PR.

E. Statistical tests

We use the non-parametric Mann-Whitney U statistical test
[18] with a 95% confidence level (i.e., a = 0.05). We consider
Bonferroni correction [19] to control the family-wise error rate
when we perform more than one comparison on the same data.
According to this correction, we divide the confidence level
a by the number of tests. We also compute the Cliff’s Delta
effect size [20] if a significant difference is obtained. An effect
size, r, is classified as ’’negligible” if r<0.2, as ’’medium” if
0.2<r<0.5, and as ’’large” if 0.5<r<0.8. The larger the effect
size the stronger the relationship between the two variables.

Regarding the statistical tests of proportional metrics (i.e.,
acceptance ratio and bug-proneness), we used Pearson’s Chi-
Square test of independence [21] to test if there is a difference
in acceptance ratio or bug-proneness between (1) multi and
mono changes in Cat-I, (2) multi and mono changes in Cat-II,
(3) multi changes in Cat-I and Cat-II projects, or (4) mono
changes in Cat-I, Cat-II, and Cat-Ill. We considered as well a
95% confidence level (i.e., a = 0.05).

TABLE I: Selected case study projects, grouped by category
and, per category, ordered from largest to smallest in terms of
total number of lines code.

Project #Code #Commits #Pull Versions
lines Requests

Spacy 6,02M 10382 1057 V2.2.4
Tensorflow 2,49M 61240 12393 V2.1.1
Pytorch 817K 19559 16999 vl.5.0
Incubator-mxnet 414K 9869 7965 vl.6.0

Cat-I CNTK
Paddle

327K
290K

16108
24724

547
10858

v2.7
vl.8.1

Caffe2 275K 3680 1260 v0.8.1
Theano 155K 28081 4094 vl.0.4
Scikit-leam 153K 24299 7971 v0.23.1
Caffe 76,3K 4154 2204 vl.O
NativeScript
Openj9

1.93M
1,47M

16150
8239

2435
4519

v6.5.2
v0.20.0

Godot 1.15M 19898 12057 V3.2.1
Libgdx 830K 13580 2779 vl.9.10

Cat-II RethinkDB
Mapbox GL

486K
399K

33402
14976

363
7707

V2.4.0
vl.11.0

React-native 395K 18038 8623 vO.63.0
Play! framework
RocksDB

394K
346K

14059
8341

1943
4012

V2.8.2
v6.11

VLC 196,IK 11866 1884 V4.0.0
Nltk 228K 13884 1128 v3.5
Keras 50,8K 5342 3918 V2.3.0
Neon 49,4K 1118 88 v0.4.0

Cat-rn Torch7 29K 1337 510 vl.5.0
Pattern 23,6K 1433 118 v2.6
Tfleam 10,4K 605 247 vO.3.2
Sonnet 7,42K 764 39 v2.0.0

Fig. 1: Percentage of the programming languages used.

III. R e s u l t s

The following section presents our results and summarizes
them per research question.

RQ1. What is the prevalence o f multi-language development
in machine learning frameworks?

Motivation: In recent years, multi-language development
has been adopted massively in the domain of Al-based
software systems. In particular, many (open-source)

548

Authorized licensed use limited to: University of Cape Coast. Downloaded on October 14,2022 at 12:28:54 UTC from IEEE Xplore. Restrictions apply.

variable Ê3 Cat-I ^ Cat-n

Cat-I Cat-II

Fig. 2: Total number of pull requests.

variable Ej=l Cat-l ^ Cat-n

Cat-I Cat-II

Fig. 3: Distribution of the percentage of multi-language pull
requests

frameworks for machine learning have been engineered
using multi-language practices, typically to integrate a low-
level language for efficient computations with a high-level
language for building robust software frameworks [22]. This
research question aims to identify the presence/absence of the
practice of multi-language development in ML frameworks.
We investigate the different languages used and the prevalence
of multi-language contributions (pull requests) in machine
learning frameworks, then compare the results with those of
multi-language traditional software systems.

Results: Both Cat-I and Cat-II projects have similar
percentages of main programming languages involved, i.e.,
the two sets of projects are comparable. Figure 1 shows
that the distribution of programming languages involved in the
studied Cat-I (Figure la) and Cat-II (Figure lb) projects are
similar. We find that regarding Cat-I, the main languages are
Python and C, while Java and C/C++ are the main languages
for Cat-II. Other languages, especially Objective-C and Perl
are the least common for both categories.

Cat-I and Cat-II projects are also comparable in terms
of the total number of PRs and the number of multi­
language PRs.

Figure 2 presents the total number of pull requests (PR)
in the studied Cat-I and Cat-II projects, respectively. The
number of pull requests of Cat-I is not significantly different

from Cat-II (p-value=0.6305) i.e., the categories are similar to
each other. As shown in Figure 3, we observe that Cat-I and
Cat-II projects have a similar proportion of multi-language
pull requests (multi-PR): both Cat-I and Cat-II have the same
median (39,08 for Cat-I and 39,09 for Cat-II), while the
variance of Cat-I is larger.

Discussion: We observe from the results that machine
learning frameworks follow the same multi-language
programming trend as traditional projects. Out of the top
20 open source machine learning frameworks identified by
Braiek et al. ’s study [7], we analyze their source code and
defined the different languages used. We find that only 35%
(seven frameworks) are mono-language frameworks, while
65% (13 frameworks, of which we studied the largest 10
frameworks for our study) are multi-language. In other words,
machine learning developers are generally aware of the
benefits of multi-language development, and are equally able
to attract open-source contributions just like the traditional
{i.e., non-ML) open-source projects. The next RQs analyze
to what extent those contributions are successful in getting
accepted and of high quality (bug-free).

The sets of Cat-I and Cat-II are comparable according to the
usage of multi-language development (Figure 1), the number
of pull requests (Figure 2), and the percentage of multi­
language pull requests (Figure 3).

RQ2. What is the impact o f multi-language development on
pull request acceptance ratio in machine learning frame­
works?

Motivation: Existing research shows that multi-language
development requires substantial additional effort from soft­
ware developers [4]. Rahman and Roy [23] also report that
programming languages involved in pull requests can influence
the success and failure rates of the pull requests.

Since pull requests represent the process through which a
collaborator contributes in a software project, this research
question aims to study the impact of multi-PR and mono-PR
on the pull request acceptance ratio of Cat-I projects. We
compare our results to those of Cat-II and Cat-Ill (mono-PR
only) projects.

Results: We did not find a significant difference between
the proportion of accepted pull requests in both Cat-I and
Cat-II. Figure 4 shows the total percentage of all accepted
pull requests (both multi-PR and mono-PR) in the two project
categories. While the Figure shows that the acceptance ratio
in Cat-II generally exceeds the acceptance ratio in Cat-I, the
chi-square test shows an insignificant difference with a p-value
= 0.08. Hence, both Cat-I and Cat-II are, in general, equally
likely to accept PRs.

Given this inconclusive result, we perform further analysis
to compare the acceptance ratio of multi-PR and mono-PR
(relative to the totality of pull requests).

549

Authorized licensed use limited to: University of Cape Coast. Downloaded on October 14,2022 at 12:28:54 UTC from IEEE Xplore. Restrictions apply.

variab le Ej=l Cat-I ^ Cat-n

25

50

Cat-I Cat-II

Fig. 4: %Accepted pull requests.

variable Ej3 Multi-PR in Cat-IF^ Multi-PR in cat-ll

50

25

Multi-PR in Cat-I Multi-PR in cat-ll

variable $ Mono-Pr In Cat-Ejzl Mono-PRIncaHEji] Mono-PR In Cat-I 11

50

25

Mono-Pr in Cat-I Mono-PR in cat-ll Mono-PR in Cat-Ill

Fig. 5: Acceptance ratio in multi-/mono-language pull re­
quests.

We did not find a significant difference between the
multi-language acceptance ratio between Cat-I and Cat-II
(same for the mono-language acceptance ratio). We observe
from Figure 5a that Cat-II projects have a generally higher
multi-PR acceptance ratio than Cat-I projects. Also, mono-PR
in Cat-II seems to have a higher acceptance ratio than mono-
PR in Cat-I, as shown in Figure 5b. However, the Chi-Square
test did not show a significant difference in either the multi-PR
acceptance ratio (p-value=0.315) or the mono-PR acceptance
ratio (p-value=0.5993) comparisons between Cat-I and Cat-
II projects. This finding shows that ML (Cat-I) and non-ML
(Cat-II) projects have similar acceptance ratio even at the finer
granularity of mono- and multi-PRs.

In Figure 5b, we further compare the acceptance ratio of
mono-PR in Cat-III with the mono-PRs in Cat-I and Cat-II. We
observe that the median percentage of accepted mono-PR of
Cat-III projects is lower than that of Cat-II projects, but higher
than the median accepted mono-PR of Cat-I projects. The Chi-
Square test shows that these differences are significant, with
p-values of 0.002269 and 0.01169, respectively.

Mono-PR have a significantly higher acceptance ratio

than multi-PR in Cat-I projects, while there is no such
difference in Cat-II projects. Multi-PR in Cat-I (Figure 5a)
and mono-PR in Cat-I (Figure 5b) show a significant difference
with a p-value of 0.02313. However, multi-PR (Figure 5a)
and mono-PR (Figure 5b) in Cat-II did not show a significant
difference (p-value = 0.227).

Discussion: Multi-language programming has been
presented as a solution for diverse problems, but, at the same
time, it represents a difficult practice that needs to be used
carefully. ML is a relatively new domain and the development
of ML systems requires competences of both software
developers (experience in programming languages) and data
scientists (experience in ML algorithms and the involved
data). Pull request reviewers could be either data scientists
or software developers, and either volunteers or employees,
as discussed by Braiek et al. [7]. Thus, the acceptance ratio
of a multi-PR could vary depending on the difference in
the expertise of the reviewers involved. In other words, the
findings in this RQ highlight that the interaction between
the complexity of the ML domain and of multi-language
development can have an impact on the contribution review
process. Future work should consider this issue in order to
support ML framework developers and reviewers in dealing
with multi-PRs.

Multi-language pull requests are significantly harder to get
accepted than in traditional projects in ML frameworks.

RQ3. What is the impact o f multi-language development on
the period taken to accept pull requests in machine learning
frameworks?

Motivation: While the previous RQ’s observations in terms
of PR acceptance ratio are able to provide some insights, they
do not tell the full story, since a multi-language PR that took
a lot of time and effort to be accepted might still indicate
a kind of overhead imposed by multi-language development.
This motivate us to investigate the period taken for a multi- or
mono-PR to be accepted or rejected. Since the period until a
PR is accepted/rejected can be impacted by several factors, we
control the time required with (1) the effort required to review
each specific PR (approximated by the number of changed files
in the PR), as well as (2) the size of the developer community.

Results: Pull requests take longer to be rejected than
accepted in both Cat-I and Cat-II, for both mono- and
multi-PR.

Figure 6 shows the period taken (in hours) by a developer
to accept or reject a mono-PR/multi-PR in all three project
categories. From the figure, we can see that the period taken
by the reviewers to reject a mono-PR (multi-PR) in Cat-I or
to reject a mono-PR (multi-PR) in Cat-II is higher than the
period taken to accept them. These observations are confirmed
by the Mann-Whitney U tests, which yield p-values of 0.00033
(0.0068) and 0.00032 (0.00049), respectively. The effect size
shows a large effect in all cases of r=0.87 (r=0.65) and r=0.87
(r=0.84), respectively.

550

Authorized licensed use limited to: University of Cape Coast. Downloaded on October 14,2022 at 12:28:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Period taken (in hours) to accept/reject a multi-/mono-PR. (It should be noted that two outliers were removed from
Cat-El’s Accept Mono-PR (value = 1352.5) and Reject Mono-PR (value = 1552.5) to improve the presentation of the figure.)

Rejecting a multi-PR takes longer than rejecting a mono-
PR in both Cat-I and Cat-II. Figure 6 shows that reviewers
spend a significantly longer amount of period to reject a multi-
PR in Cat-I than to reject a mono-PR in Cat-I , with a p-
value of 0.016 and a medium effect size of 0.54. A similar
observation can be made for Cat-II projects: it take longer for
reviewers to reject multi-PR in Cat-II than to reject a mono-
PR in Cat-II, with p-values of 0.00073 and a large effect size
of 0.75.

Only in ML frameworks, multi-PR take significantly
longer to accept than mono-PR. While we obtained a p-value
of 0.00018 (and a large effect size of 0.83) for the comparison
of multi-PR and mono-PR acceptance period in ML frame­
works (Cat-I), the p-value for the corresponding comparison in
traditional projects (Cat-II) do not show a significant difference
(p = 0.037) due to the Bonferroni correction, as we divided
the a by the number of tests (3) as discussed in Section II-E;
thus, a became 0.05 13 = 0.017, which is lower than the p-
value of 0.037. This finding shows that not only do multi-PRs
have it harder to get accepted (as reported in RQ2), the PRs
that are accepted generally take more time to do so as well.

We did not find significant differences between Cat-I
and Cat-II in terms of the period taken to accept/reject
mono-PRs. Hence, even though our comparisons within both
categories showed some differences, the categories again are
similar to each other, just like in RQ1.

ML frameworks (Cat-I) take longer to accept and reject
a multi-PR than traditional systems (Cat-II). The period to
accept (Reject) multi-PR in Cat-I is higher than Cat-II, with
significant p-values: 0.0052 (0.023) with a large effect size of
0.62 and a medium effect size of 0.5, respectively.

The acceptance (rejection) of mono-PRs in Cat-III
projects take equally long (and significantly longer) than

the corresponding periods of Cat-I and Cat-II, respectively.
We perform further analysis based on the mono-PR of Cat-
IH projects to understand whether earlier findings in this RQ
apply across all ML project (since Cat-m contains only mono­
language pull requests). The Mann-Whitney U tests comparing
the mono-PR acceptance/rejection periods of Cat-III to the
corresponding Cat-I and Cat-II periods all are significant.
However, there is no significant difference between the mono-
PR acceptance and rejection periods within Cat-III (p-value of
0.41).

These findings suggest that the observed differences in terms
of the period to accept multi-PR compared to mono-PR for
Cat-I are not necessarily due to the fact that the ML domain is
more complex, since Cat-III projects seem to suffer much more
from longer accept/reject periods than Cat-I/II. One possible
confounding factor might be that the Cat-m projects receive
larger pull requests than Cat-I/n, potentially explaining their
slower review process. Hence, we discuss this confounding
factor next.

Discussion: The more file changes in a PR, the longer
its acceptance period and the shorter its rejection period
(in both Cat-I and Cat-II). In Figure 7(a), we compare the
relationship between the median number of changed files in
multi-PRs (discussed in Section II-C) and the accepted (re­
jected) periods of multi-PR in both Cat-I and Cat-II projects.
We can see that when the median number of multi-language
files increases (X axis), the period spent (Y axis) to accept a
multi-PR in Cat-I (red dots) and multi-PR in Cat-II (blue dots)
increases as well. Spearman rank correlation showed a strong
positive relationship with the following respective coefficient,
p=0.88 and p=0.84.

However, the period spent to reject a multi-PR in Cat-I
(yellow dots) and a multi-PR in Cat-II (gray dots) decreases

551

Authorized licensed use limited to: University of Cape Coast. Downloaded on October 14,2022 at 12:28:54 UTC from IEEE Xplore. Restrictions apply.

when the number of multi-language files increases. Spearman
rank correlation showed a strong relationship (p=-0.90) only
for Cat-I (p=-0.57 for Cat-II). This may be because when a
pull request has many files, the reviewer does not invest much
time to review it and instead asks to slice the large pull request
in more manageable chunks [24].

For mono-PRs, including Cat-III, there is no correlation
between the size of a PR and its acceptance/rejection
period. In Figure 7(b), we compare the relationship between
mono-language files and the accepted (rejected) periods of
mono-PR in all three project categories. Spearman rank cor­
relation showed a significant correlation only between the
median of mono-language changed files (X axis) and the
period taken for reject mono-PR in Cat-m (p=0.95). As
future work, we will conduct more in-depth investigations to
understand the reason behind this finding.

Cat-III projects have significantly fewer contributors
than Cat-I and Cat-II. As an alternative explanation to the
different PR acceptance/rejection periods between Cat-III and
Cat-I/Cat-II (see Figure 6), we consider the size of a project’s
community i.e., the number of contributors involved in each
project. For example, a project with 100 contributors would
have a larger pool of reviewers than a project with only 50
contributors, and hence might be more effective in reviewing,
regardless of multi- or mono-PRs.

Figure 8 presents the distribution of the number of
contributors per studied system. It shows that Cat-III
projects have the least number of contributors compared
to contributors in Cat-I and Cat-II. Our Mann-Whitney U
tests show significant differences between both Cat-m vs.
Cat-I (p-value= 0.014, effect size = 0.26) and Cat-III vs.
Cat-II (p-value = 0.025, effect size = 0.51) comparisons.
We conclude that the differences between the ML projects
(Cat-m and Cat-I) in terms of mono-PR periods are not
specific to the complexity or other characteristics of ML code,
but rather due to the size of the developer community. A low
number of contributors could cause delays in the revision
process because there are not enough contributors for all the
pull requests and this is what may causes pull requests to
remain under revision for a long time before being accepted
or rejected.

In ML frameworks, multi-language PRs take longer to be
accepted than mono-language PRs and ML frameworks take
longer to accept/reject a multi-PR than traditional systems.

RQ4. Are multi-language pull requests more bug-prone than
mono-language pull requests in machine learning frame­
works?

Motivation: Despite the diverse advantages of multi­
language development, it presents some challenges to devel­
opers such as decreasing the quality and security of software
systems [13]. In this research question, we aim to understand
the correlation between multi-language development and the
introduction of bugs in ML frameworks, compared to tradi­
tional systems. Our analysis focuses only on the accepted pull

requests (rejected pull requests are incapable of introducing
bugs since they are never merged into the code base). We
compare our results across all three project categories.

Results: We only found a significant difference between
the bug-proneness of mono-PRs of ML frameworks (Cat-
I/III) and Cat-II. Figure 9 shows the percentage of bug-
introducing multi-PRs and mono-PRs (relative to the total
number of pull requests) in the studied project categories.
As shown in Figure 9a, the median percentage of the bug-
introducing multi-PR (mono-PR) of Cat-I projects is gener­
ally higher than the percentage of bug-introducing multi-PR
(mono-PR) of Cat-II projects. However, only a significant
difference was found between mono-PR of Cat-I and mono-PR
of Cat-II (p-value = 0.0006976).

We did not find a significant difference between both Cat-I’s
buggy multi-PR vs. mono-PR (p-value = 0.2799) and Cat-II’s
buggy multi-PR vs. mono-PR (p-value = 0.1051) comparisons.
Furthermore, statistical tests show a significant difference
between the buggy mono-PRs in Cat-II and Cat-III (p-value =
0.0004885), but no significant difference was found between
the buggy mono-PRs in Cat-I and Cat-III (p-value = 0.062.

Discussion: The results show a correlation between mono-
PR and the introduction of bugs in ML frameworks. The lack
of correlation between multi-PR and bug introduction can be
explained by the fact that multi-PR in ML systems are less
accepted than mono-PR as shown in (RQ2). Also, the longer
time spent by reviewers before rejecting a multi-PR (as
shown in RQ3) shows that reviewers pay more attention when
reviewing multi-PR due to its complexity (i.e., inter-language
dependencies between the multi-language changed files) and
the potential risks (bug introducing) it can cause. Since we
analyze only the accepted PRs in this research question, we
argue that a big percentage of risky multi-PR may already
been cleaned in the review process.

Despite the longer acceptance period and lower acceptance
ratio of multi-PR, no difference was found between the bug-
proneness of Cat-I and Cat-II multi-PR. However, mono-PR
in ML frameworks seem to be more bug-prone.

IV. L e s s o n s l e a r n e d a n d im p l ic a t io n s

RQ1. What is the prevalence o f multi-language development
in machine learning frameworks?

Nowadays, multi-language development is a fact in many
machine learning frameworks, as we show in Table I where the
most used ML frameworks in the industry such as Tensorflow,
PyTorch, Theano, etc, all are multi-language. Furthermore,Ben
Braiek et al. [7] showed that Python is the most commonly
used language for developing machine learning frameworks,
making the Python C extension a heavily used FFI in practice
[10]. In contrast, recent research papers [4], [11]—[13] showed
that in literature the most studied multi-language systems are
the traditional ones, i.e., non-machine learning frameworks,
and that the most used combination of languages are Java and
C/C++ interfaced via the FFI, i.e., Java Native Interface.

552

Authorized licensed use limited to: University of Cape Coast. Downloaded on October 14,2022 at 12:28:54 UTC from IEEE Xplore. Restrictions apply.

300
Category

Cat-I Accept Multi-PR

Cat-Il:Accept Multi-PR

Cat-ll: Reject Mutti-PR

Cat-I:Reject Multi-PR 200

Category

Catl Accept Mono-PR

Cat-II:Accept Mono-PR

Cat-1II:Accept Mono-PR

Cat-1II:Reject Mono-PR

Cat-ll:ReJect Mono-PR

Cat-I:Reject Mono-PR

Fig. 7: Comparing period to accept/reject a multi-/mono-PR according to the changed files.

variable E-3 Cat-I Ej=l Cat-ll Ej3 Cat-Ill

2500

2000­

1500-

1000

500

0 _̂_______________ ___________________________ _________________ 1 =*

Cat-I C a t-ll Cat-Ill

Fig. 8: Number of contributors per project.

Hence, we suggest researchers to direct their focus towards
machine learning frameworks as an important new class of
multi-language systems that not only offers a new kind of large
multi-language data-set, but also opens up a wide range of
new challenges involving software maintenance, open source
contributions, quality assurance, collaboration, etc.

RQ2. What is the impact o f multi-language development on
pull request acceptance ratio in machine learning frame­
works?

Our results show that in machine learning frameworks,
mono-language pull requests are more likely to be accepted
than multi-language pull requests, while we do not observe
such differences in the case of traditional systems. Based on
this finding, we can assume that the machine learning domain
presents more challenges for developers than traditional sys­
tems. For one, machine learning frameworks are a relatively
new domain that requires developers to collaborate with data
scientists and other roles in order to understand the complex
implementation of ML algorithms.

We suggest that future research should further explore the
challenges and issues involving program comprehension (e.g.,

va riab le [^3 Multi-PR in Cat-IEjB Multi-PR in Cat-ll

Multi-PR in Cat-I Multi-PR in Cat-ll

variable Mono-PR in CaHzj3 Mono-PR in C at-ll Mono-PR in Cat-Ill

40

30

Mono-PR in Cat-I Mono-PR in Cat-ll Mono-PR in Cat-Ill

Fig. 9: %Bug-inducing pull requests

debugging) and maintenance of multi-language machine learn­
ing frameworks. Of particular importance will be qualitative
studies of the kinds of changes made by machine learning
experts, as well as to understand their development and
comprehension needs. Furthermore, since machine learning
is a multi-disciplinary domain involving multiple roles, our
results presented in Section III will be beneficial for all roles
involved.

RQ3. What is the impact o f multi-language development on
the period taken to accept pull requests in machine learning
frameworks?

Our findings for RQ3 corroborate our earlier findings,
since we find that in ML frameworks, multi-language PRs
take longer to be accepted than mono-language PRs in ML
frameworks, in addition to having a lower acceptance rate (cf.
RQ2), however, no difference was found in traditional systems.

553

Authorized licensed use limited to: University of Cape Coast. Downloaded on October 14,2022 at 12:28:54 UTC from IEEE Xplore. Restrictions apply.

Thus, the challenge do not only come from the difficulties that
offer multi-language development but from the combination of
multi-language with machine learning frameworks. A possible
explanation is that there is a lack of the tools dedicated to
analyze and test the machine learning software contributions,
the higher time spent to treat a machine learning pull request
may be related to manual tests that a developer is doing. In
future work, we plan to perform more deep study where we
will try to classify the pull requests in terms of purpose, review
actions, and reasons for delay. We recommend to the industry
and researchers to investigate more these research directions
in order to understand the exact reasons behind the more time­
consuming ML pull requests.

RQ4. Are multi-language pull requests more bug-prone than
mono-language pull requests in machine learning frame­
works?

While RQ2 and RQ3 show that multi-language development
in machine learning frameworks presents a challenge to devel­
opers and other roles in terms of effort required to get code
contributions accepted, RQ4 do not show any difference in the
bug-proneness of those contributions between multi-language
machine learning frameworks and multi-language traditional
systems.

Interestingly, we find that mono-PRs are more bug-prone
in ML frameworks than mono-PR in traditional systems. One
possible explanation is that bug-proneness is not related to
multi-language development but instead is more related to the
difference in domain (machine learning frameworks versus
non-machine learning frameworks). Another explanation could
be related to the fact that more mono-PRs are accepted in ML
frameworks than multi-PRs, hence the larger volume of mono-
PRs compared to multi-PRs could impact bug-proneness. More
analysis is required to fully understand these observations.

V. T h r e a t s t o v a l id it y

Threats to internal validity: Threats to the internal validity
of our study concern the selected projects, the scripts used, the
SZZ algorithm, and the pull requests analysis methodology.
To mitigate these threats, first, we relied on the literature to
identify projects shown to be among the largest projects in
terms of lines of code and contributions. Then, we developed
diverse python scripts that we ran on GitHub API. We ensured
the validity of the scripts’ outcome by performing a manual
validation on a sample.

Last, regarding the SZZ, it is true that recent works have
been improving the SZZ algorithm to increase its accuracy in
specific cases [25]—[27]. However, the main challenge with
those improved versions is that they had to give up the
initial SZZ algorithm’s language independence in favour of
specialized language-specific analysis and optimizations. This
makes those approaches less compatible with our paper on
multi-language development, unless substantial effort is spent
to adapt the tools to the studied languages. Hence, in this
paper, we chose to use the basic SZZ with a number of minor
improvements to support JNI systems. To mitigate this threat,

we also measured the precision and the recall of the H-MLDA
approach based on the SZZ implementation that we used.

Threats to external validity: Threats to external validity
concern the factors that could affect the generalizability of
our findings. Our findings may not be generalizable for all the
existing multi-language systems (including machine learning
and traditional systems) since we only studied a sample of 27
open-source projects. Software system’ characteristics could
vary depending on different criteria and factors. However, to
mitigate this threat, we selected the largest ML frameworks [7]
and Java/C systems [4] and we ensured that subjects of both
categories are comparable regarding programming languages
and pull requests, as our results in RQ1 showed.

Threats to conclusion validity: Threats to conclusion con­
cern the relationship between the treatments and the findings.
To mitigate this threat, we used Mann-Whitney U test i.e., a
non-parametric test, and Chi-Square test for Independence to
compare the different analysis results across the three project
categories. Regarding Mann-Whitney U test, for the control
of family-wise error rate, we used the Bonferroni correction
to calculate an adjusted p-value whenever the same sample is
tested more than once.

Threats to reliability validity: We provided a companion
package1 with all the needed data, scripts, and results to
replicate this study.

V I. R e l a t e d W o r k

A. Multi-language development in traditional (non-ML) sys­
tems

Multi-language development has become a popular solution
to many development problems faced by software develop­
ers. In a study of the state-of-the-art in on multi-language
development by Mushtaq et al. [2], the authors highlight the
many advantages of multi-language development, such as code
re-usability and improved software performance. They stress
the importance of addressing the complexity that arises from
using more than one language in software systems, giving an
overview of the existing code comprehension and maintenance
tools specific for multi-language development, and elaborating
on their advantages and limitations.

Several approaches have been proposed to address the
challenges posed by multi-language development on code
comprehension and maintenance. Kullbach et al. [28] pre­
sented an approach for program comprehension in multi­
language systems. They showed that program comprehension
plays an essential role in improving the efficiency of software
development and maintenance processes in multi-language
systems.

Bissyande et al. [29] investigated the popularity, interop­
erability, and the impact of multiple programming languages
in open-source projects from GitHub where they analysed this
impact based on the software quality attributes. Similar to their
study, we analyze the impact of multi-language programming
on ML quality e.g., bug-proneness.

Kochhar et al. [30] investigated the impact of using sev­
eral programming languages on the quality of 628 GitHub

554

Authorized licensed use limited to: University of Cape Coast. Downloaded on October 14,2022 at 12:28:54 UTC from IEEE Xplore. Restrictions apply.

projects (traditional projects). They found that using different
programming languages significantly increases bug proneness.
They suggest further studies for design patterns and defects
that should be used in systems that practice multi-language
development. In our study, we extend this analysis to study this
impact of multi-language programming on ML frameworks.

Abidi et al. [12] surveyed 93 developers to assess then-
level of knowledge about the good and bad practices of
multi-language development. They proposed a set of practices
initially collected from the literature. The survey was done on
the proposed practices, where they found that these practice
are not equally prevalent in the industry. They recommended
that developers need to pay more attention to the best practices
of multi-language development, such as managing exceptions
between Java and C, loading libraries, etc,. Our paper comple­
ments this work by considering the application of the multi­
language development in a new domain i.e., ML frameworks.

B. Multi-language development in ML systems

Traditionally, AI developers had been using conventional
artificial intelligence programming languages i.e., Lisp or
Prolog. However, with the passage of time, they started using
multiple languages for their ML development. Poggi et al. [31]
proposed HOMAGE, an environment for the development of
multi-agent systems using three object-oriented programming
languages i.e., C++, Common Lisp, and Java. Tasharrofi et
al. [32] developed a modular framework written in multiple
languages.

The use of multi-language development is also found in
Al-based games. Phelps et al. [9] argue that multi-language
development is propagating quickly proportionally with games
which lead to development challenging. The multi-language
trend has appeared as well in the gaming world and has been
interpreted as a development revolution.

C. Software engineering practices and Machine Learning

Several studies on the adoption of traditional SE practices in
the domain of ML have been conducted over the past years.
Braiek et al. [7] investigate the relationship of open source
software and machine learning frameworks. They analyzed the
influence and the negative impact of the application of SE in
machine learning frameworks. They enumerated the advantage
offered by the application of SE in machine learning. Our
paper studies 17 of the 20 largest and well-known open-source
machine learning frameworks presented in their study.

Khomh et al. [33] are interested in the SE challenges for
machine learning frameworks, where they highlighted the im­
portance and the need that software engineering (SE) and ML
communities to cope together to deal with these challenges.
They enumerated two main challenges of practicing SE in ML:
software testing and software evolution. Dhasade et al. [34]
proposed a solution (Prioritizer tool) to support developers to
handle large volumes of issues in projects. They developed a
machine learning based solution for prioritizing pull requests
to fix issues. Prioritizer tool is based on three criteria: issue

lifetime, hotness, and category. Authors evaluated their solu­
tion’ accuracy by testing it on a data-set of 3000 issues. Veen
et al. [35] proposed a tool for pull request prioritization called
“PRioritizer”. This tool uses machine learning to work as a
priority inbox for pull requests, recommending the top pull
requests the project owner should focus on. Zhao et al. [36]
proposed a leaming-to-rank (LtR) approach for recommending
pull requests that can be quickly reviewed by reviewers.

V II . C o n c l u s io n A n d F u t u r e W o r k

Nowadays, there is an increasing trend in the practice
of multi-language development in the software engineering
domain. Despite the numerous advantages of multi-language
development such as reusing legacy code and improving com­
putational performance (e.g., with C code), there are also new
challenges related to the complexity of code comprehension
and maintenance of such systems. In this paper, we study the
prevalence of the multi-language practice in machine learning
(ML) frameworks. Since the challenges of multi-language
development in traditional systems were a subject of interest
of several existing research studies, we perform, throughout
our study, a comparison of our analysis results between ML
and traditional multi-language systems.

Our major results show that (1) Multi-language PRs in ML
frameworks have a lower acceptance ratio than mono-language
PRs; (2) multi-language PRs in ML frameworks take longer
to be accepted than mono-language PRs, and ML frameworks
take longer to accept/reject a multi-PR than traditional sys­
tems; and (3) mono-language PRs of ML frameworks are more
bug-prone than traditional systems. Other characteristics were
found to be similar between the studied ML and traditional
projects.

The paper’s findings provide a correlation between the
existence of multi-language development with machine learn­
ing. Multi-language influence the software contributions (Pull
requests) to ML frameworks as discussed in RQ2 and RQ3. We
recommend to data scientists as well as software developers
to merge their effort towards understanding multi-language
in ML and to deal with its complexity to benefit from the
advantages that offer.

In future work, we plan (1) to extend this study to apply
it on more systems for the generalization; (2) to conduct
a deeper study on confounding factors i.e., any contributor
and other background factors that could impact the review
process; (3) propose a catalogue of good and bad practices
(defined through interviews and empirical studies) in using
multi-language within ML frameworks and validate it through
a survey; and (4) perform a qualitative study to understand
the reasons behind the higher acceptance ratio in traditional
systems than ML frameworks and the longer acceptance period
in ML frameworks than traditional systems.

R e f e r e n c e s

[1] F. Boughanmi, “Multi-language and heterogeneously-licensed software
analysis,” in 2010 17th Working Conference on Reverse Engineering,
Oct 2010, pp. 293-296.

555

Authorized licensed use limited to: University of Cape Coast. Downloaded on October 14,2022 at 12:28:54 UTC from IEEE Xplore. Restrictions apply.

[2] Z. Mushtaq and G. Rasool, “Multilingual source code analysis: State
of the art and challenges,” in 2015 International Conference on Open
Source Systems Technologies (ICOSST), Dec 2015, pp. 170-175.

[3] T. Arbuckle, “Measuring multi-language software evolution: A case
study,” in Proceedings o f the 12th International Workshop on Principles
of Software Evolution and the 7th Annual ERCIM Workshop on Software
Evolution, ser. IWPSE-EVOL ’l l . New York, NY, USA: ACM, 2011,
pp. 91-95.

[4] M. Grichi, M. Abidi, Y.-G. Gueheneuc, and F. Khomh, “State of
practices of java native interface,” in Proceedings o f the 29th Annual
International Conference on Computer Science and Software Engineer­
ing, ser. CASCON ’19. USA: IBM Corp., 2019, p. 274-283.

[5] M. Furr and J. S. Foster, “Checking type safety of foreign function calls,”
in Proceedings o f the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’05. New York, NY,
USA: ACM, 2005, pp. 62-72.

[6] S. Li and G. Tan, “Finding reference-counting errors in python/c
programs with affine analysis,” in Proceedings o f the 28th European
Conference on ECOOP 2014 — Object-Oriented Programming - Volume
8586, 2014, pp. 80-104.

[7] H. Ben Braiek, F. Khomh, and B. Adams, “The open-closed principle
of modem machine learning frameworks,” in 2018 IEEE/ACM 15th
International Conference on Mining Software Repositories (MSR), May
2018, pp. 353-363.

[8] G. Varisteas, T. Avanesov, and R. State, “Distributed c++-python em­
bedding for fast predictions and fast prototyping,” in Proceedings of
the Second Workshop on Distributed Infrastructures for Deep Learning
2018, pp. 9-14. ■

[9] A. M. Phelps and D. M. Parks, “Fun and games: Multi-language
development,” Queue, vol. 1, no. 10, pp. 46-56, 2004.

[10] S. Buro and I. Mastroeni, “On the multi-language construction,” in
European Symposium on Programming. Springer, 2019, pp. 293-321.

[11] M. Abidi, F. Khomh, and Y. Gueheneuc, “Anti-patterns for multi­
language systems,” in Proceedings o f the 24th European Conference
on Pattern Languages o f Programs, EuroPLoP 2019, Irsee, Germany,
July 3-7, 2019. ACM, 2019, pp. 42:1^12:14.

[12] M. Abidi, M. Grichi, and F. Khomh, “Behind the scenes: Developers’
perception of multi-language practices,” in Proceedings o f the 29th
Annual International Conference on Computer Science and Software
Engineering, ser. CASCON ’19. USA: IBM Corp., 2019, p. 72-81.

[13] M. Abidi, M. Grichi, F. Khomh, and Y.-G. Gudheneuc, “Code smells
for multi-language systems,” in Proceedings o f the 24th European
Conference on Pattern Languages o f Programs, ser. EuroPLop ’ 19. New
York, NY, USA: Association for Computing Machinery, 2019.

[14] K. Patel, J. Fogarty, J. A. Landay, and B. L. Harrison, “Examining
difficulties software developers encounter in the adoption of statist .
machine learning.” in AAAI, 2008, pp. 1563-1566. ' ca'

[15] M. Alshangiti, H. Sapkota, P. K. Murukannaiah, X. Liu, and Q. Yu,
“Why is developing machine learning applications challenging? a study
on stack overflow posts,” in 2019 ACMJIEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM). IEEE,
2019, pp. 1-11.

[16] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” SIGSOFT Softw. Eng. Notes, 2005.

[17] S. Kim, E. J. Whitehead,, and Y. Zhang, “Classifying software changes:
Clean or buggy?” IEEE Transactions on Software Engineering, vol. 34,
no. 2, pp. 181-196, 2008.

[18] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical
methods. John Wiley & Sons, 2013, vol. 751.

[19] Analysis o f Clinical Trials Using Sas®: A Practical Guide, 1st ed. SAS
Publishing, 2005.

[20] N. Clift, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” 1993.

[21] M. McHugh, “The chi-square test of independence,” Biochemia medica
vol. 23, pp. 143-9, 06 2013. >

[22] D. Zhang and J. J. Tsai, “Machine learning and software engineering,”
Software Quality Journal, vol. 11, no. 2, pp. 87-119, 2003.

[23] M. M. Rahman and C. K. Roy, “An insight into the pull requests of
github,” in Proceedings o f the 11th Working Conference on Mining Soft­
ware Repositories, ser. MSR 2014. New York, NY, USA: Association
for Computing Machinery, 2014, p. 364-367.

[24] Y. Jiang, B. Adams, and D. M. German, “Will my patch make it? and
how fast? - case study on the linux kernel,” in Proceedings o f the 10th

IEEE Working Conference on Mining Software Repositories (MSR), San
Francisco, CA, US, May 2013, pp. 101-110.

[25] E. C. Neto, D. A. da Costa, and U. Kulesza, “The impact of refactoring
changes on the szz algorithm: An empirical study,” in 2018 IEEE
25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2018, pp. 380-390.

[26] E. C. Neto, D. A. d. Costa, and U. Kulesza, “Revisiting and improving
szz implementations,” in 2019 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), 2019, pp.
1- 12.

[27] M. Borg, O. Svensson, K. Berg, and D. Hansson, “SZZ unleashed:
An open implementation of the SZZ algorithm - featuring example
usage in a study of just-in-time bug prediction for the jenkins
project,” CoRR, vol. abs/1903.01742, 2019. [Online]. Available:
http://arxiv.org/abs/1903.01742

[28] B. Kullbach, A. Winter, P. Dahm, and J. Ebert, “Program comprehension
in multi-language systems,” in Proceedings Fifth Working Conference on
Reverse Engineering (Cat. No.98TB100261), Oct 1998, pp. 135-143.

[29] T. F. Bissyande, F. Thung, D. Lo, L. Jiang, and L. Reveillere, “Popular­
ity, interoperability, and impact of programming languages in 100,000
open source projects,” in Computer Software and Applications Confer­
ence (COMPSAC), 2013 IEEE 37th Annual. IEEE, 2013, pp. 303-312.

[30] P. S. Kochhar, D. Wijedasa, and D. Lo, “A large scale study of mul­
tiple programming languages and code quality,” in Software Analysis,
Evolution, and Reengineering (SANER), 2016 IEEE 23rd International
Conference on, vol. 1. IEEE, 2016, pp. 563-573.

[31] A. Poggi and G. Adomi, “A multi language environment to develop
multi agent applications,” in International Workshop on Agent Theories,
Architectures, and Languages. Springer, 1996, pp. 325-339.

[32] S. Tasharrofi and E. Temovska, “A semantic account for modularity in
multi-language modelling of search problems,” in International Sympo­
sium on Frontiers o f Combining Systems. Springer, 2011, pp. 259-274.

[33] F. Khomh, B. Adams, J. Cheng, M. Fokaefs, and G. Antoniol, “Software
engineering for machine-learning applications: The road ahead,” IEEE
Software, vol. 35, no. 5, pp. 81-84, 2018.

[34] A. B. Dhasade, A. S. M. Venigalla, and S. Chimalakonda, “Towards
prioritizing github issues,” in Proceedings o f the 13th Innovations in
Software Engineering Conference on Formerly known as India Software
Engineering Conference, 2020, pp. 1-5.

[35] E. Van Der Veen, G. Gousios, and A. Zaidman, “Automatically priori­
tizing pull requests,” in 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories. IEEE, 2015, pp. 357-361.

[36] G. Zhao, D. A. da Costa, and Y. Zou, “Improving the pull requests
review process using leaming-to-rank algorithms,” Empirical Software
Engineering, vol. 24, no. 4, pp. 2140-2170, 2019.

556

Authorized licensed use limited to: University of Cape Coast. Downloaded on October 14,2022 at 12:28:54 UTC from IEEE Xplore. Restrictions apply.

