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Abstract—The role of machine learning frameworks in soft­
ware applications has exploded in recent years. Similar to 
non-machine learning frameworks, those frameworks need to 
evolve to incorporate new features, optimizations, etc., yet their 
evolution is impacted by the interdisciplinary development teams 
needed to develop them: scientists and developers. One concrete 
way in which this shows is through the use of multiple pro­
gramming languages in their code base, enabling the scientists 
to write optimized low-level code while developers can integrate 
the latter into a robust framework. Since multi-language code 
bases have been shown to impact the development process, this 
paper empirically compares ten large open-source multi-language 
machine learning frameworks and ten large open-source multi­
language traditional systems in terms of the volume of pull 
requests, their acceptance ratio i.e., the percentage of accepted 
pull requests among all the received pull requests, review process 
duration i.e., period taken to accept or reject a pull request, 
and bug-proneness. We find that multi-language pull request 
contributions present a challenge for both machine learning 
and traditional systems. Our main findings show that in both 
machine learning and traditional systems, multi-language pull 
requests are likely to be less accepted than mono-language pull 
requests; it also takes longer for both multi- and mono-language 
pull requests to be rejected than accepted. Machine learning 
frameworks take longer to accept/reject a multi-language pull 
request than traditional systems. Finally, we find that mono­
language pull requests in machine learning frameworks are more 
bug-prone than traditional systems.

Keywords -Machine learning, Framework, Open Source, Soft­
ware engineering, Multi-language, Traditional systems. I.

I .  I n t r o d u c t io n

Modem software is no longer developed in a single pro­
gramming language. Instead, programmers tend to exploit the 
strengths of different programming languages, thus developing 
multi-language systems [1], [2].

In the context of this study, we consider a multi-language 
system as any software system where its own codebase con­
tains source code executed at run-time that is developed in 
at least two programming languages. This definition excludes 
Makefiles, shell scripts, etc. Furthermore, it excludes cases 
where a third party library is developed in a different language, 
since the code of that library does not belong to the system’s 
own codebase.

Programmers also opt for this practice to keep using legacy 
implementations of their existing libraries and systems, while

still benefiting from code reuse of modem software compo­
nents [3], [4], Typical combinations of programming languages 
are Python C extension [5] and Java Native Interface [4]. For 
example, the Python C extension allows a Python program to 
interact with native C/C++ modules through a native extension 
module (FF1) [6]. The extension module provides a set of 
native functions (written in C) that can be imported and used 
within Python code.

Given the complex nature of machine learning (ML) and 
artificial intelligence (AI) frameworks, the AI community 
has been taking advantage of multiple languages in a single 
machine learning framework. In particular, while Python has 
evolved as the most commonly used language for developing 
machine learning frameworks due to its large range of pow­
erful features [7], there are some demerits of using Python 
alone i.e., it lacks computational performance needed for high- 
frequency real-time predictions [8], it takes significant CPU 
time for interpretation, etc. Hence, the Python C extension is 
often used as a solution to interface with highly performant C 
code for frequently executed low-level algorithms, as required, 
for example, by the gaming industry [9], multi-agents [10], and 
so on.

Despite the benefits of using multi-languages in developing 
machine learning frameworks, there are also several challenges 
associated with it. The major issue concerning this paradigm 
is that multi-language programs do not necessary obey any of 
the semantics of the combined languages [10] and it is the de­
veloper’s responsibility to deal with the different programming 
calling conventions to avoid introduction of diverse issues that 
can harm the software.

Such concerns are not necessarily new, since multi-language 
development has been used for a long time for developing 
more traditional systems as discussed by several works in 
the literature [11]—[13]. However, in the case of ML frame­
works, the traditional issues of multi-language development 
are further corroborated by the inherent complexity of ML 
frameworks. For example, they implement highly specialized 
mathematical operations that are challenging to test and de­
bug, and even require interdisciplinary collaboration between 
scientists and developers [14], [15].

Hence, how ’’open” is open source ML framework devel­
opment? Are these frameworks following the multi-language
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trend? Does the practice of multi-language development in­
crease the difficulty of dealing with machine learning frame­
works? To the best of our knowledge, in this paper we present 
the first study that investigates the prevalence and the impact of 
multi-language development on the development of machine 
learning frameworks in terms of their ability to solicit high- 
quality open source contributions. More specifically, we study 
in this paper the impact of multi-language development in 
terms of the volume, acceptance ratio (percentage of accepted 
pull requests out of the total), review process duration (the 
period spent by the developers to accept or reject a pull 
request), and bug-proneness of pull requests (PR).

We empirically analyze the ten largest open source multi­
language machine learning frameworks (Cat-I) and the ten 
largest open source traditional systems (Cat-II). In addition, we 
consider a set of seven mono-language open source machine 
learning frameworks (Cat-III) that serves as a control group 
for the comparison between Cat-I and Cat-II. We address the 
following research questions:

.  RQ1. What is the prevalence of multi-language develop­
ment in machine learning frameworks?

• RQ2. What is the impact of multi-language development 
on pull request acceptance ratio in machine learning 
frameworks?

• RQ3. What is the impact of multi-language development 
on the period taken to accept pull requests in machine 
learning frameworks?

.  RQ4. Are multi-language pull requests more bug-prone 
than mono-language pull requests in machine learning 
frameworks?

Our main results show that:
• ML frameworks and traditional systems are comparable 

in terms of the proportion of multi-language development 
and multi-language pull requests.

• Multi-language PRs in ML frameworks have a lower 
acceptance ratio than mono-language PRs.

• Multi-language PRs in ML frameworks take longer to be 
accepted than mono-language PRs, and ML frameworks 
take longer to accept/reject a multi-PR than traditional 
systems.

• Mono-language PRs of ML frameworks are more bug- 
prone than in traditional systems.

The remainder of this paper is organized as follows. Section 
n  describes the methodology and the design of our study. 
Section III presents our findings. Section IV discusses the 
lessons learned and the implications of the findings. We 
summarize the threats to the validity of our conducted study 
in Section V and present related work in Section VI. Finally, 
Section V n concludes the paper and outlines avenues for 
future work.

II. M e t h o d o l o g y

This section discusses our methodology to empirically ana­
lyze the impact of multi-language development on open-source 
machine learning frameworks.

A. Project selection and cloning
In this empirical study, we analyze a total of 27 open source 

projects hosted on GitHub. Our selected projects include the 
ten largest multi-language machine learning frameworks and 
seven mono-language machine learning frameworks identified 
by Braiek et al. ’s study [7], as well as the ten largest 
multi-language traditional systems from Grichi et al. ’s study 
[4]. The seven mono-language machine learning frameworks 
serve to control for bias and any confounding factors in our 
comparison of multi-language machine learning and multi­
language traditional systems.

We clone each project from GitHub and extract the follow­
ing information: total number of lines of code, all pull re­
quests (PR), all commits, and the percentage of programming 
languages used. All the used scripts in this study are available 
online1 for replication.

B. Project categorisation

For clarity, the selected projects are grouped into 3 cate­
gories: Cat-I constitutes the ten largest multi-language open 
source machine learning frameworks, Cat-II constitutes the 
ten largest multi-language traditional systems, and Cat-in 
constitutes the seven mono-language open source machine 
learning frameworks. Table I gives an overview of the three 
categories.

C. Preprocessing and filtering

Accepted and Rejected Pull requests — We categorize 
pull requests as either accepted or rejected based on the 
pull request status (i.e., Merged, Closed). Pull requests with 
both closed and merged status are classified as accepted pull 
requests. We identify a rejected pull request as being closed 
but not merged. We do not consider open pull requests in this 
study as they are still under review. For the rest of paper, 
we call accepted pull requests “accept-PR” and rejected pull 
requests “reject-PR”.

Multi- and Mono-language Pull requests — We identify 
the set of changed files for each commit linked to a pull 
request, as well as the programming language(s) used in each 
file. A pull request that has at least one multi-language commit 
is considered as a multi-language pull request. Conversely, a 
pull request with no multi-language commit is considered a 
mono-language pull request. A commit is tagged as multi­
language if it has files written in more than one programming 
language, while it is tagged as mono-language when it has 
files written in only one programming language. For example, 
a pull request PI that contains two commits Cl (filel.java, 
file2.c) and C2 (jile3.c, jile4.c) is considered as a multi­
language pull request. A pull request P2 that contains two 
commits C3 (fileS.java, file6.java) and C4 (file7.c, Jile8.c) is 
considered as a mono-language pull request.

An alternative definition of multi-language PR would have 
been “any PR for which the union of changed files covers

1 https ://github.com/ICSME-2020/ICSME20.git, 
https://doi.org/10.6084/m9.figshare.12812159.vl
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at least two programming languages”. However, according to 
the rules for inter-language dependencies (e.g., , between Java 
and C), the (multi-language) dependant files should change 
together in order to compile and run, hence our commit-level 
definition is more realistic. For the rest of the paper, we call 
multi-language pull requests “multi-PR” and mono-language 
pull requests “mono-PR”.

D. Pull request analysis

Pull request acceptance period — We calculate the period 
spent (in hours) for a pull request to be accepted or rejected 
based on the difference between the pull request submission 
date and when the pull request was closed.

Bug-inducing pull requests — We collect the log mes­
sages of all pull requests and their contained commits. We 
split each message into words, the search for keywords and 
references to bug reports. Examples of the common keywords 
used were: ’“fix”, “correct”, “bug”, “error”, “issue”, “mistake”, 
“blunder”, “incorrect”, “fault”, “defect”, “flaw”, “bugfix”, 
“bugfix:”’. Each identified buggy pull request was checked 
automatically to identify any reference to a #Bug_number. As 
soon as a pull request containing one of the keywords was 
also found to refer to a bug report, it was considered to be a 
bug fix.

Then, once we identify the pull requests that contain a fix 
to a bug, we apply the SZZ algorithm [16] to determine the 
initial bug-introducing pull request. The SZZ algorithm uses 
git-blame on the revision history to identify commits that are 
likely to have introduced bugs to determine first what changed 
in the bug-fix, then to locate the origins of the deleted or 
modified source code change that introduced this bug [17]. 
Finally, all identified bug-introducing pull requests are tagged 
automatically and assigned to the right group (multi-PR or 
mono-PR). We statistically compare the bug-introducing multi- 
PR to the bug-introducing mono-PR.

E. Statistical tests

We use the non-parametric Mann-Whitney U statistical test 
[18] with a 95% confidence level (i.e., a  = 0.05). We consider 
Bonferroni correction [19] to control the family-wise error rate 
when we perform more than one comparison on the same data. 
According to this correction, we divide the confidence level 
a  by the number of tests. We also compute the Cliff’s Delta 
effect size [20] if a significant difference is obtained. An effect 
size, r, is classified as ’’negligible” if r<0.2, as ’’medium” if 
0.2<r<0.5, and as ’’large” if 0.5<r<0.8. The larger the effect 
size the stronger the relationship between the two variables.

Regarding the statistical tests of proportional metrics (i.e., 
acceptance ratio and bug-proneness), we used Pearson’s Chi- 
Square test of independence [21] to test if there is a difference 
in acceptance ratio or bug-proneness between (1) multi and 
mono changes in Cat-I, (2) multi and mono changes in Cat-II, 
(3) multi changes in Cat-I and Cat-II projects, or (4) mono 
changes in Cat-I, Cat-II, and Cat-Ill. We considered as well a 
95% confidence level (i.e., a  = 0.05).

TABLE I: Selected case study projects, grouped by category 
and, per category, ordered from largest to smallest in terms of 
total number of lines code.

Project #Code #Commits #Pull Versions
lines Requests

Spacy 6,02M 10382 1057 V2.2.4
Tensorflow 2,49M 61240 12393 V2.1.1
Pytorch 817K 19559 16999 vl.5.0
Incubator-mxnet 414K 9869 7965 vl.6.0

Cat-I CNTK
Paddle

327K
290K

16108
24724

547
10858

v2.7
vl.8.1

Caffe2 275K 3680 1260 v0.8.1
Theano 155K 28081 4094 vl.0.4
Scikit-leam 153K 24299 7971 v0.23.1
Caffe 76,3K 4154 2204 vl.O
NativeScript
Openj9

1.93M
1,47M

16150
8239

2435
4519

v6.5.2
v0.20.0

Godot 1.15M 19898 12057 V3.2.1
Libgdx 830K 13580 2779 vl.9.10

Cat-II RethinkDB 
Mapbox GL

486K
399K

33402
14976

363
7707

V2.4.0
vl.11.0

React-native 395K 18038 8623 vO.63.0
Play! framework 
RocksDB

394K
346K

14059
8341

1943
4012

V2.8.2
v6.11

VLC 196,IK 11866 1884 V4.0.0
Nltk 228K 13884 1128 v3.5
Keras 50,8K 5342 3918 V2.3.0
Neon 49,4K 1118 88 v0.4.0

Cat-rn Torch7 29K 1337 510 vl.5.0
Pattern 23,6K 1433 118 v2.6
Tfleam 10,4K 605 247 vO.3.2
Sonnet 7,42K 764 39 v2.0.0

Fig. 1: Percentage of the programming languages used.

III. R e s u l t s

The following section presents our results and summarizes 
them per research question.

RQ1. What is the prevalence o f multi-language development 
in machine learning frameworks?

Motivation: In recent years, multi-language development 
has been adopted massively in the domain of Al-based 
software systems. In particular, many (open-source)
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variable Ê3 Cat-I ^  Cat-n

Cat-I Cat-II

Fig. 2: Total number of pull requests.

variable Ej=l Cat-l ^  Cat-n

Cat-I Cat-II

Fig. 3: Distribution of the percentage of multi-language pull 
requests

frameworks for machine learning have been engineered 
using multi-language practices, typically to integrate a low- 
level language for efficient computations with a high-level 
language for building robust software frameworks [22]. This 
research question aims to identify the presence/absence of the 
practice of multi-language development in ML frameworks. 
We investigate the different languages used and the prevalence 
of multi-language contributions (pull requests) in machine 
learning frameworks, then compare the results with those of 
multi-language traditional software systems.

Results: Both Cat-I and Cat-II projects have similar 
percentages of main programming languages involved, i.e., 
the two sets of projects are comparable. Figure 1 shows 
that the distribution of programming languages involved in the 
studied Cat-I (Figure la) and Cat-II (Figure lb) projects are 
similar. We find that regarding Cat-I, the main languages are 
Python and C, while Java and C/C++ are the main languages 
for Cat-II. Other languages, especially Objective-C and Perl 
are the least common for both categories.

Cat-I and Cat-II projects are also comparable in terms 
of the total number of PRs and the number of multi­
language PRs.

Figure 2 presents the total number of pull requests (PR) 
in the studied Cat-I and Cat-II projects, respectively. The 
number of pull requests of Cat-I is not significantly different

from Cat-II (p-value=0.6305) i.e., the categories are similar to 
each other. As shown in Figure 3, we observe that Cat-I and 
Cat-II projects have a similar proportion of multi-language 
pull requests (multi-PR): both Cat-I and Cat-II have the same 
median (39,08 for Cat-I and 39,09 for Cat-II), while the 
variance of Cat-I is larger.

Discussion: We observe from the results that machine 
learning frameworks follow the same multi-language 
programming trend as traditional projects. Out of the top 
20 open source machine learning frameworks identified by 
Braiek et al. ’s study [7], we analyze their source code and 
defined the different languages used. We find that only 35% 
(seven frameworks) are mono-language frameworks, while 
65% (13 frameworks, of which we studied the largest 10 
frameworks for our study) are multi-language. In other words, 
machine learning developers are generally aware of the 
benefits of multi-language development, and are equally able 
to attract open-source contributions just like the traditional 
{i.e., non-ML) open-source projects. The next RQs analyze 
to what extent those contributions are successful in getting 
accepted and of high quality (bug-free).

The sets of Cat-I and Cat-II are comparable according to the 
usage of multi-language development (Figure 1), the number 
of pull requests (Figure 2), and the percentage of multi­
language pull requests (Figure 3).

RQ2. What is the impact o f multi-language development on 
pull request acceptance ratio in machine learning frame­
works?

Motivation: Existing research shows that multi-language 
development requires substantial additional effort from soft­
ware developers [4]. Rahman and Roy [23] also report that 
programming languages involved in pull requests can influence 
the success and failure rates of the pull requests.

Since pull requests represent the process through which a 
collaborator contributes in a software project, this research 
question aims to study the impact of multi-PR and mono-PR 
on the pull request acceptance ratio of Cat-I projects. We 
compare our results to those of Cat-II and Cat-Ill (mono-PR 
only) projects.

Results: We did not find a significant difference between 
the proportion of accepted pull requests in both Cat-I and 
Cat-II. Figure 4 shows the total percentage of all accepted 
pull requests (both multi-PR and mono-PR) in the two project 
categories. While the Figure shows that the acceptance ratio 
in Cat-II generally exceeds the acceptance ratio in Cat-I, the 
chi-square test shows an insignificant difference with a p-value 
= 0.08. Hence, both Cat-I and Cat-II are, in general, equally 
likely to accept PRs.

Given this inconclusive result, we perform further analysis 
to compare the acceptance ratio of multi-PR and mono-PR 
(relative to the totality of pull requests).
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25

50
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Fig. 4: %Accepted pull requests.

variable Ej3 Multi-PR in Cat-IF^ Multi-PR in cat-ll

50

25

Multi-PR in Cat-I Multi-PR in cat-ll

variable $  Mono-Pr In Cat-Ejzl Mono-PRIncaHEji] Mono-PR In Cat-I 11

50

25

Mono-Pr in Cat-I Mono-PR in cat-ll Mono-PR in Cat-Ill

Fig. 5: Acceptance ratio in multi-/mono-language pull re­
quests.

We did not find a significant difference between the 
multi-language acceptance ratio between Cat-I and Cat-II 
(same for the mono-language acceptance ratio). We observe 
from Figure 5a that Cat-II projects have a generally higher 
multi-PR acceptance ratio than Cat-I projects. Also, mono-PR 
in Cat-II seems to have a higher acceptance ratio than mono- 
PR in Cat-I, as shown in Figure 5b. However, the Chi-Square 
test did not show a significant difference in either the multi-PR 
acceptance ratio (p-value=0.315) or the mono-PR acceptance 
ratio (p-value=0.5993) comparisons between Cat-I and Cat-
II projects. This finding shows that ML (Cat-I) and non-ML 
(Cat-II) projects have similar acceptance ratio even at the finer 
granularity of mono- and multi-PRs.

In Figure 5b, we further compare the acceptance ratio of 
mono-PR in Cat-III with the mono-PRs in Cat-I and Cat-II. We 
observe that the median percentage of accepted mono-PR of 
Cat-III projects is lower than that of Cat-II projects, but higher 
than the median accepted mono-PR of Cat-I projects. The Chi- 
Square test shows that these differences are significant, with 
p-values of 0.002269 and 0.01169, respectively.

Mono-PR have a significantly higher acceptance ratio

than multi-PR in Cat-I projects, while there is no such 
difference in Cat-II projects. Multi-PR in Cat-I (Figure 5a) 
and mono-PR in Cat-I (Figure 5b) show a significant difference 
with a p-value of 0.02313. However, multi-PR (Figure 5a) 
and mono-PR (Figure 5b) in Cat-II did not show a significant 
difference (p-value = 0.227).

Discussion: Multi-language programming has been
presented as a solution for diverse problems, but, at the same 
time, it represents a difficult practice that needs to be used 
carefully. ML is a relatively new domain and the development 
of ML systems requires competences of both software 
developers (experience in programming languages) and data 
scientists (experience in ML algorithms and the involved 
data). Pull request reviewers could be either data scientists 
or software developers, and either volunteers or employees, 
as discussed by Braiek et al. [7]. Thus, the acceptance ratio 
of a multi-PR could vary depending on the difference in 
the expertise of the reviewers involved. In other words, the 
findings in this RQ highlight that the interaction between 
the complexity of the ML domain and of multi-language 
development can have an impact on the contribution review 
process. Future work should consider this issue in order to 
support ML framework developers and reviewers in dealing 
with multi-PRs.

Multi-language pull requests are significantly harder to get 
accepted than in traditional projects in ML frameworks.

RQ3. What is the impact o f multi-language development on 
the period taken to accept pull requests in machine learning 
frameworks?

Motivation: While the previous RQ’s observations in terms 
of PR acceptance ratio are able to provide some insights, they 
do not tell the full story, since a multi-language PR that took 
a lot of time and effort to be accepted might still indicate 
a kind of overhead imposed by multi-language development. 
This motivate us to investigate the period taken for a multi- or 
mono-PR to be accepted or rejected. Since the period until a 
PR is accepted/rejected can be impacted by several factors, we 
control the time required with (1) the effort required to review 
each specific PR (approximated by the number of changed files 
in the PR), as well as (2) the size of the developer community.

Results: Pull requests take longer to be rejected than 
accepted in both Cat-I and Cat-II, for both mono- and 
multi-PR.

Figure 6 shows the period taken (in hours) by a developer 
to accept or reject a mono-PR/multi-PR in all three project 
categories. From the figure, we can see that the period taken 
by the reviewers to reject a mono-PR (multi-PR) in Cat-I or 
to reject a mono-PR (multi-PR) in Cat-II is higher than the 
period taken to accept them. These observations are confirmed 
by the Mann-Whitney U tests, which yield p-values of 0.00033 
(0.0068) and 0.00032 (0.00049), respectively. The effect size 
shows a large effect in all cases of r=0.87 (r=0.65) and r=0.87 
(r=0.84), respectively.
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Fig. 6: Period taken (in hours) to accept/reject a multi-/mono-PR. (It should be noted that two outliers were removed from 
Cat-El’s Accept Mono-PR (value = 1352.5) and Reject Mono-PR (value = 1552.5) to improve the presentation of the figure.)

Rejecting a multi-PR takes longer than rejecting a mono- 
PR in both Cat-I and Cat-II. Figure 6 shows that reviewers 
spend a significantly longer amount of period to reject a multi- 
PR in Cat-I than to reject a mono-PR in Cat-I , with a p- 
value of 0.016 and a medium effect size of 0.54. A similar 
observation can be made for Cat-II projects: it take longer for 
reviewers to reject multi-PR in Cat-II than to reject a mono- 
PR in Cat-II, with p-values of 0.00073 and a large effect size 
of 0.75.

Only in ML frameworks, multi-PR take significantly 
longer to accept than mono-PR. While we obtained a p-value 
of 0.00018 (and a large effect size of 0.83) for the comparison 
of multi-PR and mono-PR acceptance period in ML frame­
works (Cat-I), the p-value for the corresponding comparison in 
traditional projects (Cat-II) do not show a significant difference 
(p = 0.037) due to the Bonferroni correction, as we divided 
the a  by the number of tests (3) as discussed in Section II-E; 
thus, a  became 0.05 13  = 0.017, which is lower than the p- 
value of 0.037. This finding shows that not only do multi-PRs 
have it harder to get accepted (as reported in RQ2), the PRs 
that are accepted generally take more time to do so as well.

We did not find significant differences between Cat-I 
and Cat-II in terms of the period taken to accept/reject 
mono-PRs. Hence, even though our comparisons within both 
categories showed some differences, the categories again are 
similar to each other, just like in RQ1.

ML frameworks (Cat-I) take longer to accept and reject 
a multi-PR than traditional systems (Cat-II). The period to 
accept (Reject) multi-PR in Cat-I is higher than Cat-II, with 
significant p-values: 0.0052 (0.023) with a large effect size of 
0.62 and a medium effect size of 0.5, respectively.

The acceptance (rejection) of mono-PRs in Cat-III 
projects take equally long (and significantly longer) than

the corresponding periods of Cat-I and Cat-II, respectively.
We perform further analysis based on the mono-PR of Cat- 
IH projects to understand whether earlier findings in this RQ 
apply across all ML project (since Cat-m contains only mono­
language pull requests). The Mann-Whitney U tests comparing 
the mono-PR acceptance/rejection periods of Cat-III to the 
corresponding Cat-I and Cat-II periods all are significant. 
However, there is no significant difference between the mono- 
PR acceptance and rejection periods within Cat-III (p-value of 
0.41).

These findings suggest that the observed differences in terms 
of the period to accept multi-PR compared to mono-PR for 
Cat-I are not necessarily due to the fact that the ML domain is 
more complex, since Cat-III projects seem to suffer much more 
from longer accept/reject periods than Cat-I/II. One possible 
confounding factor might be that the Cat-m projects receive 
larger pull requests than Cat-I/n, potentially explaining their 
slower review process. Hence, we discuss this confounding 
factor next.

Discussion: The more file changes in a PR, the longer 
its acceptance period and the shorter its rejection period 
(in both Cat-I and Cat-II). In Figure 7(a), we compare the 
relationship between the median number of changed files in 
multi-PRs (discussed in Section II-C) and the accepted (re­
jected) periods of multi-PR in both Cat-I and Cat-II projects. 
We can see that when the median number of multi-language 
files increases (X axis), the period spent (Y axis) to accept a 
multi-PR in Cat-I (red dots) and multi-PR in Cat-II (blue dots) 
increases as well. Spearman rank correlation showed a strong 
positive relationship with the following respective coefficient, 
p=0.88 and p=0.84.

However, the period spent to reject a multi-PR in Cat-I 
(yellow dots) and a multi-PR in Cat-II (gray dots) decreases
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when the number of multi-language files increases. Spearman 
rank correlation showed a strong relationship (p=-0.90) only 
for Cat-I (p=-0.57 for Cat-II). This may be because when a 
pull request has many files, the reviewer does not invest much 
time to review it and instead asks to slice the large pull request 
in more manageable chunks [24].

For mono-PRs, including Cat-III, there is no correlation 
between the size of a PR and its acceptance/rejection 
period. In Figure 7(b), we compare the relationship between 
mono-language files and the accepted (rejected) periods of 
mono-PR in all three project categories. Spearman rank cor­
relation showed a significant correlation only between the 
median of mono-language changed files (X axis) and the 
period taken for reject mono-PR in Cat-m (p=0.95). As 
future work, we will conduct more in-depth investigations to 
understand the reason behind this finding.

Cat-III projects have significantly fewer contributors 
than Cat-I and Cat-II. As an alternative explanation to the 
different PR acceptance/rejection periods between Cat-III and 
Cat-I/Cat-II (see Figure 6), we consider the size of a project’s 
community i.e., the number of contributors involved in each 
project. For example, a project with 100 contributors would 
have a larger pool of reviewers than a project with only 50 
contributors, and hence might be more effective in reviewing, 
regardless of multi- or mono-PRs.

Figure 8 presents the distribution of the number of 
contributors per studied system. It shows that Cat-III 
projects have the least number of contributors compared 
to contributors in Cat-I and Cat-II. Our Mann-Whitney U 
tests show significant differences between both Cat-m vs. 
Cat-I (p-value= 0.014, effect size = 0.26) and Cat-III vs. 
Cat-II (p-value = 0.025, effect size = 0.51) comparisons. 
We conclude that the differences between the ML projects 
(Cat-m and Cat-I) in terms of mono-PR periods are not 
specific to the complexity or other characteristics of ML code, 
but rather due to the size of the developer community. A low 
number of contributors could cause delays in the revision 
process because there are not enough contributors for all the 
pull requests and this is what may causes pull requests to 
remain under revision for a long time before being accepted 
or rejected.

In ML frameworks, multi-language PRs take longer to be 
accepted than mono-language PRs and ML frameworks take 
longer to accept/reject a multi-PR than traditional systems.

RQ4. Are multi-language pull requests more bug-prone than 
mono-language pull requests in machine learning frame­
works?

Motivation: Despite the diverse advantages of multi­
language development, it presents some challenges to devel­
opers such as decreasing the quality and security of software 
systems [13]. In this research question, we aim to understand 
the correlation between multi-language development and the 
introduction of bugs in ML frameworks, compared to tradi­
tional systems. Our analysis focuses only on the accepted pull

requests (rejected pull requests are incapable of introducing 
bugs since they are never merged into the code base). We 
compare our results across all three project categories.

Results: We only found a significant difference between 
the bug-proneness of mono-PRs of ML frameworks (Cat- 
I/III) and Cat-II. Figure 9 shows the percentage of bug- 
introducing multi-PRs and mono-PRs (relative to the total 
number of pull requests) in the studied project categories. 
As shown in Figure 9a, the median percentage of the bug- 
introducing multi-PR (mono-PR) of Cat-I projects is gener­
ally higher than the percentage of bug-introducing multi-PR 
(mono-PR) of Cat-II projects. However, only a significant 
difference was found between mono-PR of Cat-I and mono-PR 
of Cat-II (p-value = 0.0006976).

We did not find a significant difference between both Cat-I’s 
buggy multi-PR vs. mono-PR (p-value = 0.2799) and Cat-II’s 
buggy multi-PR vs. mono-PR (p-value = 0.1051) comparisons. 
Furthermore, statistical tests show a significant difference 
between the buggy mono-PRs in Cat-II and Cat-III (p-value = 
0.0004885), but no significant difference was found between 
the buggy mono-PRs in Cat-I and Cat-III (p-value = 0.062.

Discussion: The results show a correlation between mono- 
PR and the introduction of bugs in ML frameworks. The lack 
of correlation between multi-PR and bug introduction can be 
explained by the fact that multi-PR in ML systems are less 
accepted than mono-PR as shown in (RQ2). Also, the longer 
time spent by reviewers before rejecting a multi-PR (as 
shown in RQ3) shows that reviewers pay more attention when 
reviewing multi-PR due to its complexity (i.e., inter-language 
dependencies between the multi-language changed files) and 
the potential risks (bug introducing) it can cause. Since we 
analyze only the accepted PRs in this research question, we 
argue that a big percentage of risky multi-PR may already 
been cleaned in the review process.

Despite the longer acceptance period and lower acceptance 
ratio of multi-PR, no difference was found between the bug- 
proneness of Cat-I and Cat-II multi-PR. However, mono-PR 
in ML frameworks seem to be more bug-prone.

IV. L e s s o n s  l e a r n e d  a n d  im p l ic a t io n s

RQ1. What is the prevalence o f multi-language development 
in machine learning frameworks?

Nowadays, multi-language development is a fact in many 
machine learning frameworks, as we show in Table I where the 
most used ML frameworks in the industry such as Tensorflow, 
PyTorch, Theano, etc, all are multi-language. Furthermore,Ben 
Braiek et al. [7] showed that Python is the most commonly 
used language for developing machine learning frameworks, 
making the Python C extension a heavily used FFI in practice 
[10]. In contrast, recent research papers [4], [11]—[13] showed 
that in literature the most studied multi-language systems are 
the traditional ones, i.e., non-machine learning frameworks, 
and that the most used combination of languages are Java and 
C/C++ interfaced via the FFI, i.e., Java Native Interface.

552

Authorized licensed use limited to: University of Cape Coast. Downloaded on October 14,2022 at 12:28:54 UTC from IEEE Xplore.  Restrictions apply. 



300
Category

Cat-I Accept Multi-PR 

Cat-Il:Accept Multi-PR 

Cat-ll: Reject Mutti-PR 

Cat-I:Reject Multi-PR 200

Category

Catl Accept Mono-PR 

Cat-II:Accept Mono-PR 

Cat-1II:Accept Mono-PR 

Cat-1II:Reject Mono-PR 

Cat-ll:ReJect Mono-PR 

Cat-I:Reject Mono-PR

Fig. 7: Comparing period to accept/reject a multi-/mono-PR according to the changed files.

variable E-3 Cat-I Ej=l Cat-ll Ej3 Cat-Ill

2500

2000­

1500-

1000

500

0 _̂_______________ ___________________________ _________________ 1 =*

Cat-I C a t-ll Cat-Ill
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Hence, we suggest researchers to direct their focus towards 
machine learning frameworks as an important new class of 
multi-language systems that not only offers a new kind of large 
multi-language data-set, but also opens up a wide range of 
new challenges involving software maintenance, open source 
contributions, quality assurance, collaboration, etc.

RQ2. What is the impact o f multi-language development on 
pull request acceptance ratio in machine learning frame­
works?

Our results show that in machine learning frameworks, 
mono-language pull requests are more likely to be accepted 
than multi-language pull requests, while we do not observe 
such differences in the case of traditional systems. Based on 
this finding, we can assume that the machine learning domain 
presents more challenges for developers than traditional sys­
tems. For one, machine learning frameworks are a relatively 
new domain that requires developers to collaborate with data 
scientists and other roles in order to understand the complex 
implementation of ML algorithms.

We suggest that future research should further explore the 
challenges and issues involving program comprehension (e.g.,

va riab le  [^3 Multi-PR in Cat-IEjB Multi-PR in Cat-ll

Multi-PR in Cat-I Multi-PR in Cat-ll

variable Mono-PR in CaHzj3 Mono-PR in C at-ll Mono-PR in Cat-Ill

40

30

Mono-PR in Cat-I Mono-PR in Cat-ll Mono-PR in Cat-Ill

Fig. 9: %Bug-inducing pull requests

debugging) and maintenance of multi-language machine learn­
ing frameworks. Of particular importance will be qualitative 
studies of the kinds of changes made by machine learning 
experts, as well as to understand their development and 
comprehension needs. Furthermore, since machine learning 
is a multi-disciplinary domain involving multiple roles, our 
results presented in Section III will be beneficial for all roles 
involved.

RQ3. What is the impact o f multi-language development on 
the period taken to accept pull requests in machine learning 
frameworks?

Our findings for RQ3 corroborate our earlier findings, 
since we find that in ML frameworks, multi-language PRs 
take longer to be accepted than mono-language PRs in ML 
frameworks, in addition to having a lower acceptance rate (cf. 
RQ2), however, no difference was found in traditional systems.
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Thus, the challenge do not only come from the difficulties that 
offer multi-language development but from the combination of 
multi-language with machine learning frameworks. A possible 
explanation is that there is a lack of the tools dedicated to 
analyze and test the machine learning software contributions, 
the higher time spent to treat a machine learning pull request 
may be related to manual tests that a developer is doing. In 
future work, we plan to perform more deep study where we 
will try to classify the pull requests in terms of purpose, review 
actions, and reasons for delay. We recommend to the industry 
and researchers to investigate more these research directions 
in order to understand the exact reasons behind the more time­
consuming ML pull requests.

RQ4. Are multi-language pull requests more bug-prone than 
mono-language pull requests in machine learning frame­
works?

While RQ2 and RQ3 show that multi-language development 
in machine learning frameworks presents a challenge to devel­
opers and other roles in terms of effort required to get code 
contributions accepted, RQ4 do not show any difference in the 
bug-proneness of those contributions between multi-language 
machine learning frameworks and multi-language traditional 
systems.

Interestingly, we find that mono-PRs are more bug-prone 
in ML frameworks than mono-PR in traditional systems. One 
possible explanation is that bug-proneness is not related to 
multi-language development but instead is more related to the 
difference in domain (machine learning frameworks versus 
non-machine learning frameworks). Another explanation could 
be related to the fact that more mono-PRs are accepted in ML 
frameworks than multi-PRs, hence the larger volume of mono- 
PRs compared to multi-PRs could impact bug-proneness. More 
analysis is required to fully understand these observations.

V. T h r e a t s  t o  v a l id it y

Threats to internal validity: Threats to the internal validity 
of our study concern the selected projects, the scripts used, the 
SZZ algorithm, and the pull requests analysis methodology. 
To mitigate these threats, first, we relied on the literature to 
identify projects shown to be among the largest projects in 
terms of lines of code and contributions. Then, we developed 
diverse python scripts that we ran on GitHub API. We ensured 
the validity of the scripts’ outcome by performing a manual 
validation on a sample.

Last, regarding the SZZ, it is true that recent works have 
been improving the SZZ algorithm to increase its accuracy in 
specific cases [25]—[27]. However, the main challenge with 
those improved versions is that they had to give up the 
initial SZZ algorithm’s language independence in favour of 
specialized language-specific analysis and optimizations. This 
makes those approaches less compatible with our paper on 
multi-language development, unless substantial effort is spent 
to adapt the tools to the studied languages. Hence, in this 
paper, we chose to use the basic SZZ with a number of minor 
improvements to support JNI systems. To mitigate this threat,

we also measured the precision and the recall of the H-MLDA 
approach based on the SZZ implementation that we used.

Threats to external validity: Threats to external validity 
concern the factors that could affect the generalizability of 
our findings. Our findings may not be generalizable for all the 
existing multi-language systems (including machine learning 
and traditional systems) since we only studied a sample of 27 
open-source projects. Software system’ characteristics could 
vary depending on different criteria and factors. However, to 
mitigate this threat, we selected the largest ML frameworks [7] 
and Java/C systems [4] and we ensured that subjects of both 
categories are comparable regarding programming languages 
and pull requests, as our results in RQ1 showed.

Threats to conclusion validity: Threats to conclusion con­
cern the relationship between the treatments and the findings. 
To mitigate this threat, we used Mann-Whitney U test i.e., a 
non-parametric test, and Chi-Square test for Independence to 
compare the different analysis results across the three project 
categories. Regarding Mann-Whitney U test, for the control 
of family-wise error rate, we used the Bonferroni correction 
to calculate an adjusted p-value whenever the same sample is 
tested more than once.

Threats to reliability validity: We provided a companion 
package1 with all the needed data, scripts, and results to 
replicate this study.

V I. R e l a t e d  W o r k

A. Multi-language development in traditional (non-ML) sys­
tems

Multi-language development has become a popular solution 
to many development problems faced by software develop­
ers. In a study of the state-of-the-art in on multi-language 
development by Mushtaq et al. [2], the authors highlight the 
many advantages of multi-language development, such as code 
re-usability and improved software performance. They stress 
the importance of addressing the complexity that arises from 
using more than one language in software systems, giving an 
overview of the existing code comprehension and maintenance 
tools specific for multi-language development, and elaborating 
on their advantages and limitations.

Several approaches have been proposed to address the 
challenges posed by multi-language development on code 
comprehension and maintenance. Kullbach et al. [28] pre­
sented an approach for program comprehension in multi­
language systems. They showed that program comprehension 
plays an essential role in improving the efficiency of software 
development and maintenance processes in multi-language 
systems.

Bissyande et al. [29] investigated the popularity, interop­
erability, and the impact of multiple programming languages 
in open-source projects from GitHub where they analysed this 
impact based on the software quality attributes. Similar to their 
study, we analyze the impact of multi-language programming 
on ML quality e.g., bug-proneness.

Kochhar et al. [30] investigated the impact of using sev­
eral programming languages on the quality of 628 GitHub
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projects (traditional projects). They found that using different 
programming languages significantly increases bug proneness. 
They suggest further studies for design patterns and defects 
that should be used in systems that practice multi-language 
development. In our study, we extend this analysis to study this 
impact of multi-language programming on ML frameworks.

Abidi et al. [12] surveyed 93 developers to assess then- 
level of knowledge about the good and bad practices of 
multi-language development. They proposed a set of practices 
initially collected from the literature. The survey was done on 
the proposed practices, where they found that these practice 
are not equally prevalent in the industry. They recommended 
that developers need to pay more attention to the best practices 
of multi-language development, such as managing exceptions 
between Java and C, loading libraries, etc,. Our paper comple­
ments this work by considering the application of the multi­
language development in a new domain i.e., ML frameworks.

B. Multi-language development in ML systems

Traditionally, AI developers had been using conventional 
artificial intelligence programming languages i.e., Lisp or 
Prolog. However, with the passage of time, they started using 
multiple languages for their ML development. Poggi et al. [31] 
proposed HOMAGE, an environment for the development of 
multi-agent systems using three object-oriented programming 
languages i.e., C++, Common Lisp, and Java. Tasharrofi et 
al. [32] developed a modular framework written in multiple 
languages.

The use of multi-language development is also found in 
Al-based games. Phelps et al. [9] argue that multi-language 
development is propagating quickly proportionally with games 
which lead to development challenging. The multi-language 
trend has appeared as well in the gaming world and has been 
interpreted as a development revolution.

C. Software engineering practices and Machine Learning

Several studies on the adoption of traditional SE practices in 
the domain of ML have been conducted over the past years. 
Braiek et al. [7] investigate the relationship of open source 
software and machine learning frameworks. They analyzed the 
influence and the negative impact of the application of SE in 
machine learning frameworks. They enumerated the advantage 
offered by the application of SE in machine learning. Our 
paper studies 17 of the 20 largest and well-known open-source 
machine learning frameworks presented in their study.

Khomh et al. [33] are interested in the SE challenges for 
machine learning frameworks, where they highlighted the im­
portance and the need that software engineering (SE) and ML 
communities to cope together to deal with these challenges. 
They enumerated two main challenges of practicing SE in ML: 
software testing and software evolution. Dhasade et al. [34] 
proposed a solution (Prioritizer tool) to support developers to 
handle large volumes of issues in projects. They developed a 
machine learning based solution for prioritizing pull requests 
to fix issues. Prioritizer tool is based on three criteria: issue

lifetime, hotness, and category. Authors evaluated their solu­
tion’ accuracy by testing it on a data-set of 3000 issues. Veen 
et al. [35] proposed a tool for pull request prioritization called 
“PRioritizer”. This tool uses machine learning to work as a 
priority inbox for pull requests, recommending the top pull 
requests the project owner should focus on. Zhao et al. [36] 
proposed a leaming-to-rank (LtR) approach for recommending 
pull requests that can be quickly reviewed by reviewers.

V II .  C o n c l u s io n  A n d  F u t u r e  W o r k

Nowadays, there is an increasing trend in the practice 
of multi-language development in the software engineering 
domain. Despite the numerous advantages of multi-language 
development such as reusing legacy code and improving com­
putational performance (e.g., with C code), there are also new 
challenges related to the complexity of code comprehension 
and maintenance of such systems. In this paper, we study the 
prevalence of the multi-language practice in machine learning 
(ML) frameworks. Since the challenges of multi-language 
development in traditional systems were a subject of interest 
of several existing research studies, we perform, throughout 
our study, a comparison of our analysis results between ML 
and traditional multi-language systems.

Our major results show that (1) Multi-language PRs in ML 
frameworks have a lower acceptance ratio than mono-language 
PRs; (2) multi-language PRs in ML frameworks take longer 
to be accepted than mono-language PRs, and ML frameworks 
take longer to accept/reject a multi-PR than traditional sys­
tems; and (3) mono-language PRs of ML frameworks are more 
bug-prone than traditional systems. Other characteristics were 
found to be similar between the studied ML and traditional 
projects.

The paper’s findings provide a correlation between the 
existence of multi-language development with machine learn­
ing. Multi-language influence the software contributions (Pull 
requests) to ML frameworks as discussed in RQ2 and RQ3. We 
recommend to data scientists as well as software developers 
to merge their effort towards understanding multi-language 
in ML and to deal with its complexity to benefit from the 
advantages that offer.

In future work, we plan (1) to extend this study to apply 
it on more systems for the generalization; (2) to conduct 
a deeper study on confounding factors i.e., any contributor 
and other background factors that could impact the review 
process; (3) propose a catalogue of good and bad practices 
(defined through interviews and empirical studies) in using 
multi-language within ML frameworks and validate it through 
a survey; and (4) perform a qualitative study to understand 
the reasons behind the higher acceptance ratio in traditional 
systems than ML frameworks and the longer acceptance period 
in ML frameworks than traditional systems.
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